

960247

CHEMISTRY

Paper-II

Time: 3 Hours

Full Marks: 100

 $2 \times 8 = 16$

Insturctions: (1) Answer all questions.(2) The figures in the right-hand margin indicate full marks for the questions.

I. Answer any eight questions :

- (a) Discuss the shape of XeF_4 based on VSEPR theory.
- (b) State the Arrhenius definition of acids and bases.
- (c) Acetic acid is a weak acid. Explain, why.
- (d) The reaction of combustion of methane is

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

How many moles of methane are required to produce 44 g of CO₂?

- (e) Write the structure formulae of-
 - (i) 2,4-Dimethylhexane-3-one;
 - (ii) Prop-2-en-1-nitrile.
- (f) Draw keto-enol structures of acetone and predict which form exhibits better stability.
- (g) What is ozonolysis?
- (h) How will you detect the presence of unsaturation in an organic compound?
- (i) Write the Hund's rule of maximum multiplicity.
- 2. Answer any fifteen questions :
 - (a) Write the Octet rule. State its significance and limitations.
 - (b) Explain why bond angle in water is less than that of ammonia.
 - (c) What is meant by conjugate acid-base pair? Find the conjugate acid-base pair in the following reaction :

$$NH_2NH_2 + H_2O \rightarrow NH_2NH_3^+ + OH^-$$

96/YY8-2018/CHEM-II

[P.T.O.

3×15=45

SEAL

- (d) Identify the following redox reaction as displacement, disproportionation reactions :
 - (i) $Cl_2(g) + 2OH^-(aq) \rightarrow ClO^-(aq) + Cl^-(aq) + H_2O(l)$
 - (ii) $CuSO_4$ (aq) + Zn (s) $\rightarrow Cu$ (s) + $CuSO_4$ (aq)
 - (iii) $Mg(s) + 2H_2O(l) \rightarrow Mg(OH)_2(s) + H_2(g)$
- (e) Name one anti-knocking agent. Write its merits and demerits (one each).
- (f) Predict the structure of reduction products obtained when but-2-yne is reduced with (i) Lindlar's catalyst and (ii) Na in liquid NH₃.
- (g) Calculate the gross and net calorific value of a coal sample having the following composition :

C = 80%; H = 7%; S = 3.5%; N = 2.1% and ash = 4.4%

- (h) Discuss Ritter test to distinguish primary, secondary and tertiary alcohols.
- (i) Write the ground state electronic configurations of the following :
 - (i) C
 - (ii) F
 - (iii) Ca
- (j) The ionization energy of H is 13.6 eV. What is the difference in energy between the n = 1 and n = 6 levels?
- (k) How many orbitals are possible for n = 4? Which of these may be described as gerade?
- (1) Account for the large decrease in the electron affinity between Li and Be despite the increase in nuclear charge.
- (m) Determine the number of unpaired electrons in the ground state of the following ions :
 - (i) Ti^{3+}
 - (ii) Mn^{2+}
 - (iii) Cu^{2+}

(n) Using Slater's rule, calculate Z^* for the following electrons :

- (i) a 3p electron in P
- (ii) a 4s electron in Co

(o) Describe the factors which influence the electron affinity of halogens.

- (p) What are the isotopes of hydrogen? How is H_2 prepared from CH_4 ?
- (q) Describe the extraction of Cu from its mineral, chalcopyrite.

96/YY8-2018/CHEM-II

(2)

- 3. Answer any three questions :
 - (a) What is acid-base indicator? Explain the working principle of acid-base indicator with the help of an example.
 - (b) What is singlet oxygen? Write the chemical properties of O_2 .

is 98.96 g. What are its empirical and molecular formulae?

- (c) Determine the ground state term symbol of the following free atoms :
 - (i) B
 - (ii) N

(a)

- (d) Briefly describe hyperconjugation with an example.
- 4. Answer any three questions :

Define molecular formula and empirical formula. The elemental composition of a compound is H: 4.07 %; C: 24.27 % and Cl: 71.65%. The molar mass of the compound

- (b) What is the relation between pH and pOH? If 0.40 g of NaOH is dissolved in water to give 1000 ml of solution at 25°C. Calculate the concentrations of potassium and hydroxyl ions. Calculate the pH.
- (c) What are silicones? How $(CH_3)_2SiCl_2$ can be synthesized? Write the hydrolysis product of $(CH_3)_2SiCl_2$ and their corresponding polymer.
- (d) Write three major iron ores along with their chemical formulae. Describe whether Fe_3O_4 exhibits spinel or inverse spinel structure.

5. Complete the following reactions (any six) :

(i)	$B(OH)_3 + (CH_3CO)_2O$	\rightarrow
(ii)	$(CN)_2 + N_3H$	\rightarrow

- (iii) Mg + Si (Δ in absence of air) \rightarrow
- (iv) $CO + I_2O_5 \rightarrow A$
- (v) $BF_3 + NaBH_4$ (in ether) \rightarrow
- (vi) $B(Me)_3 + NH_3 \rightarrow$
- (vii) $CO_2 + OH^- \rightarrow$

96/YY8-2018/CHEM-II

5×3=15

12