

740092

CHEMISTRY

Paper-II

Time: 3 Hours

Full Marks: 100

 $2 \times 10 = 20$

SEA

Insturctions: (1) Answer all questions.

(2) The figures in the right-hand margin indicate full marks for the questions.

1. Answer any ten questions :

- (a) What is PDI? What is the main difference between biopolymers and synthetic polymers from PDI point of view?
- (b) State the Schulze-Hardy rule. If the arsenious sol is negatively charged, arrange the following ions in the order of precipitating power :
 - (i) Na_3PO_4
 - (ii) AlCl₃
 - (iii) $Mg(NO_3)_2$
- (c) Write the expression for the Maxwell-Boltzmann distribution of speeds.
- (d) Explain why viscosity of glycerol is much more than that of ether.
- (e) At Boyle temperature a real gas behaves as an ideal gas. Explain why.
- (f) What is ultraviolet catastrophe?
- (g) Distinguish between basicity and nucleophilicity.
- (h) Explain why dipole moments of phenol (1.7D) and methanol (1.6D) are in opposite directions.
- (i) Acid catalysed dehydration of 2-methylbutan-2-ol gives rise to two products. Predict the structure of the products.
- (j) Draw secondary or β -structure of protein.
- (k) Draw resonance structures of tropylium ion and predict its aromaticity.
- 2. Answer any six questions :

2×6=12

- (a) Three spin allowed transitions are expected for d^2 configuration in octahedral field. Assign the transitions with the help of an Orgel diagram.
- (b) Discuss the CO stretching frequencies of the following transition metal complexes : $[Ni(CO)_4] 2060 \text{ cm}^{-1}$, $[Mn(CO)_6]^+ 2090 \text{ cm}^{-1}$ and $[V(CO)_6]^- 1860 \text{ cm}^{-1}$
- (c) How does greenhouse gas, CO₂ affect environment?
- (d) How could Green Chemistry principles be applied to treat CO₂?

74/YY8-2018/CHEM-II

(1) SEAL

[P.T.O.

- (e) The first ionization energies of C and Ge are 1086 kJ mol⁻¹ and 760 kJ mol⁻¹, respectively. Explain the reason.
- (f) The electron affinities of Be and Mg are zero. Why?
- (g) Account for the very high boiling point of HF (19.9°C) compared to HBr (-66.7°C).

3. Answer any six questions :

- (a) State the principles of corresponding states. What are the physical significance of reduced variables?
- (b) Explain the role of salt bridge in electrochemical cell.
- (c) Devise the electrochemical cell diagram in which the cell reaction is

 $Mn(s) + Cl_2(g) \rightarrow MnCl_2(aq d)$

- (d) Water can form bubbles, cavity and droplet. Write the expression of the pressure difference across the surface for each case.
- (e) Write the Gibbs-Duhem equation. State the physical significance of the expression.
- (f) How over alkylation in the synthesis of amine from alkyl halide can be stopped?
- (g) How will you convert benzene into aniline? Write reactions involved in the conversion.
- (h) Distinguish 1°, 2°, 3° alcohols by oxidation reaction with chromic acid.
- 4. Answer any six questions :

(a) At 90°C the vapour pressure of benzene is 20 kPa and that of toluene is 18 kPa. What is the composition of the vapour when the liquid mixture has the composition $x_{\text{benzene}} = 0.33$ and $x_{\text{toluene}} = 0.67$?

- (b) Define $C_{P, m}$ and $C_{V, m}$ and derive the relation between them for *n* moles of an ideal gas.
- (c) At a total pressure of 2 atmospheres and 673K the equilibrium constant K_P for the reaction N₂O₄ (g) \leftrightarrow 2 NO₂ (g) is 1.64×10⁻⁴. Calculate K_C and K_X .
- (d) Describe the activated complex theory. Show that it leads to the rate constant

$$= \left(\frac{RT}{hN_A}\right) e^{\left(\frac{\Delta H^{\neq}}{RT}\right)} e^{\left(\frac{\Delta S^{\neq}}{R}\right)}, \text{ where the symbols have their own meanings.}$$

- (e) State Kohlrausch's Law of independent migration of ions. How does it help in determination of molar conductance at infinite dilution of weak electrolytes?
- (f) Propose a reaction mechanism by which carbon chain length of an aliphatic carboxylic acid can be increased.

74/YY8-2018/CHEM-II

(2)

4×6=24

 $3 \times 6 = 18$

(g) Identify compounds A, B, C and D in the following sequence of reactions :

$$o\text{-Nitrophenol} \xrightarrow{(CH_3)_2SO} [A] \xrightarrow{Zn, HCl} [B] \xrightarrow{NaNO_2, HCl} [C] \xrightarrow{C_2H_5OH} [D]$$

- 5. Answer any four questions :
 - (a) Use VSEPR model to predict the probable structures of the following : ICl_4^- , XeO_2F_2 , XeF_6 and IF_7
 - (b) How is H_2O_2 prepared industrially? Describe the structure of H_2O_2 .
 - (c) Explain the structure and bonding of XeF_2 with the help of molecular orbital theory.
 - (d) How boric acid can be produced from borax? Give reaction. Describe the structure of boric acid and its origin of acidity.

Catalyst	Catalytic process
Pt/Pd supported on CeO ₂	Photocatalysis
TiO ₂	Propylene hydrogenation
TiCl ₄ /Et ₃ Al	Three-way catalysis
[RhCl(PPh ₃) ₃]	Production of H_2SO_4 Ethylene polymerization Methanol synthesis

(e) Choose the correct catalytic processes for the following transition metal catalysts :

6. Propose reaction mechanisms of the following (any two) :

5×2=10

- (a) Kiliani-Fischer synthesis of monosaccharides
- (b) Synthesis of Nylon 66
- (c) Mutarotation
- (d) Kolbe electrolysis

74/YY8-2018/CHEM-II

4×4≡16

(g) Identify compounds A, B, C and D in the following sequence of reactions :

$$o\text{-Nitrophenol} \xrightarrow{(CH_3)_2SO} [A] \xrightarrow{Zn, HCl} [B] \xrightarrow{NaNO_2, HCl} [C] \xrightarrow{C_2H_5OH} [D]$$

- 5. Answer any four questions :
 - (a) Use VSEPR model to predict the probable structures of the following : ICl_4^- , XeO_2F_2 , XeF_6 and IF_7
 - (b) How is H_2O_2 prepared industrially? Describe the structure of H_2O_2 .
 - (c) Explain the structure and bonding of XeF_2 with the help of molecular orbital theory.
 - (d) How boric acid can be produced from borax? Give reaction. Describe the structure of boric acid and its origin of acidity.

Catalyst	Catalytic process
Pt/Pd supported on CeO ₂	Photocatalysis
TiO ₂	Propylene hydrogenation
TiCl ₄ /Et ₃ Al	Three-way catalysis
[RhCl(PPh ₃) ₃]	Production of H_2SO_4 Ethylene polymerization Methanol synthesis

(e) Choose the correct catalytic processes for the following transition metal catalysts :

6. Propose reaction mechanisms of the following (any two) :

5×2=10

- (a) Kiliani-Fischer synthesis of monosaccharides
- (b) Synthesis of Nylon 66
- (c) Mutarotation
- (d) Kolbe electrolysis

74/YY8-2018/CHEM-II

4×4≡16