090024

ELECTRONICS ENGINEERING

Time : 3 hours

Full Marks : 200

Instructions :

- (1) Answer ten questions choosing at least five from each Section.
- (2) The figures in the margin indicate full marks for the questions.
- (3) Assume suitable data, if necessary and indicate the same clearly.

SECTION-A

1.	(a)	What are insulators, conductors and semiconductors?	5	
	(b)	What is an intrinsic semiconductor? How is an <i>N</i> -type semiconductor created?	7	
	(c)	What are majority and minority charge carriers?	4	
	(d)	Write about drift and diffusion process of charge carriers in semiconductors.	4	A DOWN OF A DOWN OF A DOWN
2.	(a)	What is an ideal voltage and a current source? Explain.	4	No. of Concession, Name
	(b)	Describe the formation process of a P - N junction in a semiconductor diode.	10	
	(c)	Draw the V-I characteristics of a semiconductor diode.	6	
3.	(a)	State Kirchhoff's voltage and current law.	4	
	(b)	State superposition theorem and maximum power transfer theorem.	4	
	(c)	An alternating voltage $(80 + j60)$ volts is applied to a circuit and current flowing is $(-4 + j10)$. Find the impedance of the circuit, the power consumed and the phase angle.	12	
16/	YY8-	-2018/Elect Engg 1 [P.T	.O.	

- 4. (a) State Thevenin's and Norton's theorems.
 - (b) Find the Thevenin equivalent circuit between A and B of the given circuit.

(c) Find the equivalent resistance of the given network between points A and B.

Describe the construction and working principle of a permanent **5.** (a) 7 magnet moving-coil instrument. Calculate the value of shunt resistance and multiplying factor for (b)converting a 5 mA meter with 20 ohm internal resistance into a 5 A 5 ammeter. What are primary and secondary transducers? Give example. 4 (c) 4 (d)What are active and passive transducers? Give example. What are the capacity of memory having 32-address lines and 8-data **6**. (a) lines? 4 What are erasable and non-erasable memories? Explain. 4 (b)What are volatile and non-volatile memories? Explain. 4 (c)What are the programmable logic devices? Describe the various types (d)5 of programmable logic devices. Convert the hexadecimal number ABC to decimal. Show the different (e)3 steps.

16/YY8–2018/Elect Engg

6

8

6

- 7. (a) What is meant by radiation pattern of an antenna? Explain. 4 (b) What are the different types of aperture in antenna theory? Write in brief. 8 (c) What is meant by characteristic impedance of a transmission line? 4 Explain. (d)What is meant by polarization of a radio wave? What are the different types? 4 SECTION-B 8 **8.** (a) What are class A, class B, class C and class AB amplifiers? Explain. (b) What are the multivibrators and oscillators? What are the differences between them? 4 Write the expressions for frequency and duty cycle of a 555 timer IC (c)based astable multivibrator. Draw the circuit diagram. 8 9. (a) Write the Boolean algebra expressions of De Morgan theorem. 3 (b) Express the Boolean function $F = A + \overline{B}C$ in a sum of minterms. The 7 function has the three variables A, B, C.
 - (c) Design a logic circuit to implement the operation specified in the following truth table. Draw the circuit.
 10

	Inputs				
Α	В	С	Jouipui		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1 .		
1	1	1	0		

- **10.** (a) Draw the internal block diagram of Intel 8255 programmable peripheral interface IC.
 - (b) Write a note on the features of Intel 8255 programmable peripheral interface IC.
 - (c) What are the different operating modes of Intel 8255 programmable peripheral interface IC? Explain.

16/YY8–2018/Elect Engg

[P.T.O.

6

7

7

11.	(a)	Write about different addressing modes of 8085 microprocessor.	8
	(b)	What is an instruction cycle in a microprocessor?	4
	(ċ)	What is an interrupt? Explain.	4
	(d)	What are the various interrupt lines of Intel 8085 microprocessor? Write in brief.	4
12.	(a)	Justify the statement, "If a receiver knows the message being transmitted, the amount of information carried will be zero."	6
	(b)	What is channel capacity?	5
	(c)	What are the main functions of a radio receiver?	5
	(d)	What are the advantages of a superheterodyne receiver?	4
13.	(a)	Describe the major physical components of a closed-loop control system. Draw a block diagram representing the components.	8
	(b)	Describe how a closed-loop control system is more immune to parameter variation than an open-loop control system.	6
	(c)	Explain the following terms : 2×3=0	б
	(c)	Explain the following terms : 2×3=0 (i) Open-loop transfer functions	6
	(c)	Explain the following terms : $2 \times 3 = 0$ (i) Open-loop transfer functions(ii) Feed-forward transfer functions	6
	(c)	Explain the following terms : $2 \times 3 = 0$ (i) Open-loop transfer functions(ii) Feed-forward transfer functions(iii) Closed-loop transfer functions	6
	(c)	Explain the following terms : 2×3=0 (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions	6
14.	(c) (a)	Explain the following terms : $2 \times 3 = 0$ (i) Open-loop transfer functions(ii) Feed-forward transfer functions(iii) Closed-loop transfer functionsDefine rise time, peak time, maximum overshoot and settling time with their mathematical expressions.	6 8
14.	(c) (a)	 Explain the following terms : 2×3=0 (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions Define rise time, peak time, maximum overshoot and settling time with their mathematical expressions. The characteristic equation of a feedback control system is given by 	6 8
14.	(c) (a) (b)	Explain the following terms : $2 \times 3 = 0$ (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions Define rise time, peak time, maximum overshoot and settling time with their mathematical expressions. The characteristic equation of a feedback control system is given by $s^4 + 20s^3 + 15s^2 + 2s + K = 0$	8
14.	(c) (a) (b)	Explain the following terms : $2 \times 3 = 0$ (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions Define rise time, peak time, maximum overshoot and settling time with their mathematical expressions. The characteristic equation of a feedback control system is given by $s^4 + 20s^3 + 15s^2 + 2s + K = 0$ Determine the range of K for the system response to be stable. Can	8
14.	(c) (a) (b)	Explain the following terms : $2\times3=0$ (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions Define rise time, peak time, maximum overshoot and settling time with their mathematical expressions. The characteristic equation of a feedback control system is given by $s^4 + 20s^3 + 15s^2 + 2s + K = 0$ Determine the range of K for the system response to be stable. Can the system be marginally stable? If so, then find the value of K and	8
14.	(c) (a) (b)	Explain the following terms : $2\times3=0$ (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions Define rise time, peak time, maximum overshoot and settling time with their mathematical expressions. The characteristic equation of a feedback control system is given by $s^4 + 20s^3 + 15s^2 + 2s + K = 0$ Determine the range of K for the system response to be stable. Can the system be marginally stable? If so, then find the value of K and frequency of sustained oscillation.	6 8 2
14.	(c) (a) (b)	Explain the following terms : $2\times3=0$ (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions Define rise time, peak time, maximum overshoot and settling time with their mathematical expressions. The characteristic equation of a feedback control system is given by $s^4 + 20s^3 + 15s^2 + 2s + K = 0$ Determine the range of K for the system response to be stable. Can the system be marginally stable? If so, then find the value of K and frequency of sustained oscillation.	8
14.	(c) (a) (b)	Explain the following terms : $2\times3=0$ (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions Define rise time, peak time, maximum overshoot and settling time with their mathematical expressions. The characteristic equation of a feedback control system is given by $s^4 + 20s^3 + 15s^2 + 2s + K = 0$ Determine the range of K for the system response to be stable. Can the system be marginally stable? If so, then find the value of K and frequency of sustained oscillation. ***	6 8 2
14.	(c) (a) (b) YY8-	Explain the following terms : $2\times3=4$ (i) Open-loop transfer functions (ii) Feed-forward transfer functions (iii) Closed-loop transfer functions Define rise time, peak time, maximum overshoot and settling time with their mathematical expressions. The characteristic equation of a feedback control system is given by $s^4 + 20s^3 + 15s^2 + 2s + K = 0$ Determine the range of K for the system response to be stable. Can the system be marginally stable? If so, then find the value of K and frequency of sustained oscillation. *** 2018/Elect Engg 4 YY8-58	6 8 2

SEAL