# CC/M/EXAM. 2020

# **PHYSICS**

#### PAPER-II

Time: 3 hours]

Full Marks: 250

**Note**: Question Nos. 1 and 5 are compulsory and out of the remaining, any three are to be attempted choosing at least ONE question from each Section. The number of marks carried by a question/part is indicated against it.

#### SECTION-A

1. Answer any five of the following questions :

10×5=50

- (a) A 50 MeV beam of protons is fired over a distance of 10 km. If the initial size of the wave packet is  $1.5 \times 10^{-6}$  m, what would be the final size upon arrival?
- (b) How long will it take for the wave packet of a proton confined to  $10^{-15}$  m to grow to a size equal to the distance between the Earth and the Sun, if this distance is equal to  $1.5 \times 10^8$  km?
- (c) A particle of mass m, which moves freely in an infinite potential well of length a, has the following wave function at t = 0:

$$\psi(x,0) = \frac{A}{\sqrt{a}} \sin\left(\frac{\pi x}{a}\right) + \sqrt{\frac{3}{5a}} \sin\left(\frac{3\pi x}{a}\right) + \sqrt{\frac{1}{5a}} \sin\left(\frac{5\pi x}{a}\right)$$

where A is real constant.

- (i) Find A so that  $\psi(x,0)$  is normalized.
- (ii) If measurements of the energy are carried out, what are the values that will be found?
- (d) Write the position operator  $\hat{x}$  and momentum operator  $\hat{p}$  in terms of ladder operators. Hence find  $[\hat{x}, \hat{p}]$ .
- (e) Describe how Stern-Gerlach experiment led to the concept of space quantization. How does it demonstrate existence of magnetic moment and electron spin?
- (f) Discuss Zeeman splitting of sodium D lines in weak magnetic field.
- (g) What is Raman effect? Explain theoretically, the observed characteristics of the Raman spectrum of a diatomic molecule.

# 2. Answer the following questions:

(a) A particle of energy E is incident on a one-dimensional potential step defined by

$$V(x) = \begin{cases} 0 & \text{, if } x \le 0 \\ V_0 & \text{, if } x \ge 0 \end{cases}$$

Find the reflection and transmission coefficients when (i)  $E > V_0$  and (ii)  $E < V_0$ . 20

15

15

- (b) Normalize the wave function  $\langle x \mid \psi \rangle = \begin{cases} N e^{-kx} &, x > 0 \\ N e^{kx} &, x < 0 \end{cases}$ . Determine the probability that a measurement of the momentum p finds the momentum between p and p+dp for the wave function.
- (c) Given  $\psi(x) = 5\cos^2\left(\frac{2\pi x}{L}\right) + 2\sin\left(\frac{4\pi x}{L}\right)$ . Find the possible values of p and corresponding probabilities for obtaining them. So use the un-normalized function to read off the relative odds. Then rescale them to get the absolute probabilities.

# 3. Answer the following questions:

- (a) (i) Consider the function  $\psi(x) = Ae^{-\frac{m\omega x^2}{2h}}$ . Find A to normalize it.
  - (ii) Consider a harmonic oscillator whose energy in the classical theory is given by  $E = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2$ , so that in the quantum version of the oscillators, the wave function for a state of definite energy obeys

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_E(x)}{dx^2} + \frac{1}{2}m\omega^2 x^2\psi_E(x) = E\psi_E(x)$$

Show that  $\Psi$  in (i) satisfies this equation with  $E = \frac{\hbar\omega}{2}$ .

- (b) Find the energy function  $\psi_E$  in a box using  $e^{\pm ikx}$  instead of  $\sin kx$  and  $\cos kx$ . 15
- (c) Consider a free particle V(x) = 0 moving in a ring of circumference L. Let  $\psi_n(x)$  be the normalized state of momentum  $p = \frac{2\pi n\hbar}{L}$ .
  - (i) Show that  $\psi_n(x)$  is also the state of definite energy E and find its energy by showing that it satisfies  $H\psi = E\psi$

where (in general) 
$$H\psi(x) \equiv -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x)\psi(x)$$
.

(ii) Let 
$$\psi(x,0) = 3\psi_2(x) + 4\psi_3(x)$$
. Normalize this and find  $\psi(x,t)$ .

### 4. Answer the following questions :

(a) Distinguish between  $\overline{L}$ - $\overline{S}$  and  $\overline{J}$ - $\overline{J}$  coupling schemes in case of two-valence electron system. Under what conditions an L-S and J-J coupling scheme has been observed? Give examples.

20

(b) What is anomalous Zeeman effect? Discuss the Zeeman patterns to the resonance  $(D_1, D_2)$  lines of sodium.

15

(c) The absorption spectrum of HCl molecule consists of 4 consecutive lines with wave numbers 83·03 cm<sup>-1</sup>, 103·73 cm<sup>-1</sup>, 124·30 cm<sup>-1</sup> and 145·03 cm<sup>-1</sup>. What J values do they correspond? Calculate the moment of inertia and the internuclear separation. Also find the region of e.m. spectrum where the spectrum lies.

15

#### SECTION-B

**5.** Answer any five of the following questions:

 $10 \times 5 = 50$ 

- (a) Cl<sup>33</sup> decays by positron emission of energy 4·3 MeV. Write the decay equation and find the nuclear radius of the product nucleus.
- (b) Calculate the binding energy and specific binding energy for  $_{28}\mathrm{Ni^{64}}=63\cdot9280\,\mathrm{u}$  and  $_{29}\mathrm{Cu^{64}}=63\cdot9298\,\mathrm{u}$ , given that  $m_p=1\cdot007825\,\mathrm{u}$  and  $m_n=1\cdot00965\,\mathrm{u}$ . Compare the stability of  $\mathrm{Ni^{64}}$  and  $\mathrm{Cu^{64}}$ .
- (c) The linear absorption coefficient  $\mu_e$  of lead for 1 MeV gamma rays is 74 m<sup>-1</sup>. Calculate the thickness of lead to reduce the intensity of gamma rays to  $\frac{1}{100}$  of its original value and half-value thickness.
- (d) Describe the success and failures of the nuclear shell model with suitable examples.
- (e) The interplanar spacing of (110)-plane is  $2\cdot 2$  Å for a cubic crystal. Calculate the atomic radius.
- (f) Write the characteristics of an ideal OP-AMP. Draw the electronic symbol of an OP-AMP and label its pins.
- (g) State and prove De Morgan's theorem. What is meant by De Morganization?

- 6. Answer the following questions:
  - (a) A simple cubic crystal illuminated with X-rays of wavelength 0.09 nm is rotated and the first-order Bragg reflection occurs at a minimum glancing angle of 8.8°. Which set of crystal planes is responsible for this reflection? Find the spacing between these planes and the angle for the first-order reflection from the (110) crystal planes.

20

(b) Describe band theory of solids on the basis of Kronig-Penney model. Distinguish among conductors, semi-conductors and insulators.

15

15

- (c) Discuss the Fermi level in *n*-type and *p*-type semiconductors with temperature.
- 7. Answer the following questions:
  - (a) What is a JFET? Describe the principle of operation of an FET.

20

(b) Describe in short, high temperature  $T_c$  superconductivity.

15

(c) The critical fields for a sample are  $1.4 \times 10^5$  Am<sup>-1</sup> and  $4.2 \times 10^5$  Am<sup>-1</sup> at  $T_C = 14$  K and 13 K respectively. What are the transistor temperatures and critical field at 0 K and 4.2 K?

15

- 8. Answer the following questions:
  - (a) In a star there is the following carbon-nitrogen cycle to produce energy:

$$\begin{split} p + {}_{6}\mathrm{C}^{12} &\to {}_{7}\mathrm{N}^{13} \to {}_{6}\mathrm{C}^{13} + e^{+} + \nu \\ p + {}_{6}\mathrm{C}^{13} &\to {}_{7}\mathrm{N}^{14}, \ p + {}_{7}\mathrm{N}^{14} \to {}_{7}\mathrm{O}^{15} \to {}_{7}\mathrm{N}^{15} + e^{+} + \nu \\ p + {}_{7}\mathrm{N}^{15} &\to {}_{6}\mathrm{C}^{12} + {}_{2}\mathrm{He}^{4} \end{split}$$

Calculate the total energy released in the above cycle by taking

$$m_{\rm H} = 1.007825 \,\mathrm{u}, \, m_{\rm He} = 4.0026034 \,\mathrm{u}, \, m_e = 5.4 \times 10^4 \,\mathrm{u}$$
 and  $1 \,\mathrm{u} = 931.5 \,\mathrm{MeV}.$  20

- (b) Explain the difference between nuclear fission and nuclear fusion. Outline the properties of nuclear fission.
- (c) Calculate the threshold energy for the following photon-disintegration reaction—

$$_{1}\mathrm{H}^{2}+\gamma(h\mathrm{v})\rightarrow _{1}\mathrm{H}^{1}+n\rightarrow p+n$$

Given that m(d) = 2.0140 u, u = 940 MeV

15

\* \* \*