COMBINED COMPETITIVE EXAMINATION (MAIN)

CHEMISTRY

Paper-I

Time: 3 Hours Full Marks: 200

Note: (1) The figures in the right-hand margin indicate full marks for the questions.

- (2) Attempt five questions in all.
- (3) Question No. 1 is compulsory.
- 1. Give your justification for any ten of the following statements or facts: $4 \times 10 = 40$
 - (a) Electron affinity of fluorine is less than that of chlorine.
 - (b) The solutions and compounds of U3+ ions are deep orange in colour.
 - (c) The rate of a first order reaction decreases exponentially with time.
 - (d) Ionic solids are hard and brittle while metals are hard, malleable and ductile.
 - (e) Both [Ni(CN)₄]²⁻ and [Ni(CO)₄] are diamagnetic but they have different geometries.
 - (f) Mixing of ideal gases is purely an entropy effect.
 - (g) ΔG is used more compared to ΔA to express spontaneity of the chemical reactions.
 - (h) Usually a saturated solution of KCI or NH₄NO₃ is used in the salt bridge.
 - (i) IR stretching frequency of CO for metal carbonyl complexes are in the order

$$M-CO > M_2-CO > M_3-CO$$

- (j) Although sodium ion has smaller ionic radii than potassium ion, ionic mobility of sodium ion is less than that of potassium ion in water.
- (k) Adsorption is genereally exothermic.
- (1) Joule-Thomson experiment is isoenthalpic.
- (m) The quantum yield of H₂-Cl₂ photochemical reaction is 10⁶ which is much higher than H₂-Br₂ reaction.

2. Answer any *eight* questions from the following: $5\times8=40$

- How are Cartesian coordinates related to polar coordinates? Give relevant diagrams. (a)
- (b) Show that the molar heat capacity (C_{V_m}) of a monoatomic perfect gas is 12.47 $J.K^{-1}.mol^{-1}$.
- A sparingly soluble electrolyte M_2X ionizes as $M_2X \leftrightarrow 2M^+ + X^2$. Deduce the (c) relationship among solubility product (K_{sp}) , molal solubility (S) and molal activity coefficients (γ_{+})
- Draw the shapes of $3d_{xy}$ and $3d_{x^2-y^2}$. Give all the values of n,l and m for these orbitals.
- Solid A is insulator in the solid state but conductor in the molten state and in aqueous (e) solution. What type of solid is it? Justify your answer.
- Describe what happens and write the chemical reactions involved-(f)
 - (i) when metallic potassium is dissolved in ammonia to form dilute solution;
 - when more potassium is added to form concentrated solution.
- Distinguish between the rate (r) and the rate constant (k) of a chemical reaction with (g) respect to concentration of the species involved in the reaction and time.
- If both NaCl and CsCl adopt same crystal structure, which one will have high lattice (h) energy and why?
- State Fajan's rule. Explain why Ag₂S is much less soluble than Ag₂O in water.
- The dipole moment of HI is 0.384 D and bond distance is 1.60 Å. What will be the percentage of ionic character of HI?
- Predict the shape of PCl, and explain why the axial and equatorial bond lengths in PCl, (k) are not equal.
- Draw the resonating structures for CO₃² and NO₂.
- 3. Answer any eight questions from the following:

5×8=40

- Consider two H-like atoms. In atom A, the electron is in n = 1 state while in atom B, it is in n = 4 state. (i) Which atom has the ground state configuration? (ii) In which atom the electron moves faster? (iii) Which atom has larger ionization energy? (iv) Which atom has the lower potential energy?
- Show that for a first order reaction with rate constant k, half life time is (b)

$$\frac{t_1}{\frac{1}{2}} = \frac{0.693}{k}$$

181/YY8-2018/CHEM-I

- (c) What is activated complex theory? Write the expression of rate constant in terms of entropy of activation ($\Delta^{\pm} S^{0}$) and enthalpy of activation ($\Delta^{\pm} H^{0}$).
- (d) For the electrochemical half reaction Cu^{2+} (aq) + e \rightarrow Cu^{+} (aq), state how the electrode potential varies with concentration of the ions in solution.
- (e) Predict the bond order and magnetic property in B2 and N2.
- (f) Sketch the η^2 and η^4 interaction of 1,4-butadiene with a metal atom.
- (g) Explain the effect on the d-orbital energies upon compression of an octahedral complex along the z-axis.
- (h) How is the magnetic behaviour of Gd³⁺ and Lu³⁺ different from the rest of the lanthanides?
- (i) Show that $\Delta G = W_{non-PV}$ at constant T and P.
- (j) What is the coordination number of CCP and BCC or cubic-I structure? What is the amount of the unfilled or unoccupied space in the above structures?
- (k) Calculate the entropy of mixing per mole of air with 79% N_2 , 20% O_2 and 1% He.
- (1) Using VSEPR theory, predict the geometry and shape of the following molecules: XeF₄ and ICl₂
- 4. Answer any five questions from the following:

 $8 \times 5 = 40$

- (a) Discuss why in square planar complexes, the crystal field splitting of the d-orbital energies of a central metal ion decrease in the sequence $d_{x^2-y^2} > d_{xy} > d_{z^2} > d_{xz}$, $d_{yz} = d_{xy} + d_{yz} = d_{yz} + d_{yz} = d_{yz} + d_{yz} = d_{yz} + d_{yz} = d_{yz} + d_{yz} + d_{yz} = d_{yz} + d$
- (b) Draw the structure of Zeise's salt. Discuss the Dewar-Chatt-Duncanson description of bonding of Zeise's salt.
- (c) Write a short note on Joule-Thomson experiment.
- (d) Predict the bond order of metal-metal bond in the following complexes : $[Mo_2Cl_8]^{4-}$ and $[Re_2Cl_8]^{2-}$
- (e) Describe the physical significance of ψ and ψ^2 . What is eigenvalue equation? Explain with the help of an example. Deduce the expression for the linear momentum and Hamiltonian operator.
- (f) What is intrinsic point defect? Discuss how the number of Schottky and Frenkel or intrinsic point defects vary with temperature and enthalpy.
- (g) What are exact and inexact differentials? Show that dW is an inexact differential.
- (h) What is a reference electrode? Give three examples of reference electrode (Write their IUPAC notations). What is the importance of a reference electrode?

5. Answer any five questions from the following:

8×5=40

- (a) Show that for an infinitesimal reversible process, $dS_{system} + dS_{surrounding} = 0$.
- (b) Draw the molar conductivity vs. concentration plot for strong electrolytes. Write the physical significance of the limiting molar conductivity (Λ_m^0) . State the Kohlrausch's law and the Kohlrausch's law of independent migration of ions.
- (c) What are the mathematical expressions for normalized and orthogonal wave functions? Write the expression of the normalized wave function for the particle in a box system.
- (d) Describe the structure of AgCl and ZnS. Write their coordination and the formula unit.
- (e) What are allowed and forbidden transitions? It is observed that solutions of [Fe(CN)₆]⁴ is yellow and [Fe(H₂O)]²⁺ is green. Explain and characterize the origin of the transitions in these complexes.
- (f) How would you expect the first and second ionization energies of the lanthanoids to vary across the series?
- (g) What are degenerate orbitals? Comment upon the degeneracy of 3s, 3p and 3d for H-atom and multielectron system.
- (h) The rate law for the reaction $A + B \rightarrow P$ is $r = k[A]^2[B]$. (i) By what factor is the initial rate multiplied if the initial concentration of A is multiplied by 1.5 and the initial concentration of B is tripled? (ii) If tripling the initial A concentration multiples the initial rate by 27, what is the order with respect to A?
- 6. Answer any five questions from the following:

8×5=40

- (a) If $\Delta H_{sublimation}$ (Li) = 161 kJmol⁻¹, $\Delta H_{dissociation}$ (F₂) = 79 kJmol⁻¹, $\Delta H_{ionization}$ (Li) = 531 kJmol⁻¹, $\Delta H_{electron\ affinity}$ (F) = -328 kjmol⁻¹, $\Delta H_{lattice\ enthalpy}$ (LiF(s)) = 1239 kJmol⁻¹, calculate the enthalpy of formation of LiF (s).
- (b) The ligand field splitting parameter (Δ_0) between t_{2g} and e_g orbital for the octahedral complexes $[Mn(H_2O)_6]^{3+}$ and $[Mn(CN)_6]^{3-}$ are 15800 cm⁻¹ and 38500 cm⁻¹ respectively. The electron pairing energy (P) for Mn³⁺ ions is about 2800 cm⁻¹. Do these complexes have high spin or low spin? Write their d-electron configuration.
- (c) What are Miller indices? Determine the indices of a plane that intersects the axes at $\frac{a}{2}$, $\frac{b}{2}$, $\frac{c}{2}$. Calculate the separations of the (1 1 2) planes in a crystal in which the cubic unit cell has side 562 pm.

- (d) The standard cell potential for the reaction $Cu^{2+}(aq) + Fe^{2+}(aq) + I^{-}(aq) \rightleftharpoons Cul(s) + Fe^{3+}(aq)$ is + 0.090 V. Use the Nernst equation to calculate the electrochemical potential at 298.15 K for the cell $Pt(s) \mid Cul_2$ (aq, 0.010 mol dm⁻³) $Cul(s) \mid FeSO_4(aq, 0.010 \text{ mol dm}^{-3})$, $Fe_2(SO_4)_3$ (aq), 0.020 mol dm⁻³) $\mid Pt(s)$.
- (e) Absorption of UV radiations decomposes acetone according to the reaction

$$(CH_3)_2CO + hv \rightarrow C_2H_6 + CO$$

The quantum yield for the reaction at 280 nm is 0.2. A sample of acetone absorbs radiation at 280 nm at the rate of 7.5×10^{-3} Js⁻¹. Calculate the rate of formation of CO.

- (f) Find the activation energy of a reaction whose rate constant is multiplied by 6.50 when temperature is increased from 300.0 K to 310.0 K.
- (g) The conductivity of KCl (aq) at 25°C is 14.668 mS m⁻¹ when c = 1 mmol dm⁻³ and 71.740 mS m⁻¹ when c = 5 mmol dm⁻³. Determine the values of the limiting molar conductivity Λ_m^0 and the Kohlrausch's constant (K).
- (h) The equilibrium constant K_p for the reaction $\operatorname{Cl}_2(g) \leftrightarrow 2\operatorname{Cl}(g)$ is 0.57 bar at 2000 K. Suppose that 0.1 mole of chlorine is present in a volume of 5 L at that temperature. What will be the degree of dissociation?
- 7. Answer any five questions from the following:

 $8 \times 5 = 40$

- (a) Discuss the separation of lanthanoids by cation exchange chromatography.
- (b) State Franck-Condon principle. Discuss the fate of the excited states with the help of Jablonski diagram.
- (c) The expression for the change in the equilibrium constant (K) for an equilibrium $A \leftrightarrow B$ with temperature (T) is given by $\frac{d\ln K}{dT} = \frac{\Delta r H^{\circ}}{RT^2}$. State and explain the direction of shift of the equilibrium with increase in temperature when (i) the reaction is exothermic. and (ii) the reaction is endothermic.
- (d) Show that the variation of Gibb's free energy G with T and P is

$$\left(\frac{\partial G}{\partial T}\right)_{P} = -S \text{ and } \left(\frac{\partial G}{\partial P}\right)_{T} = V$$

- (e) How do a solution of weak acid and its salt behave as a buffer? Derive Henderson-Hasselbalch equation to calculate pH of the solution.
- (f) Draw the MO diagram for CO molecule. Explain which end in CO forms organometallic compounds.

- (g) Explain how you will determine the solubility product of AgCl with the help of an electrochemical cell. Write the corresponding cell diagram.
- (h) Write the Arrhenius equation. Write the significance of activation energy. What is Arrhenius plot? State what information can be retrieved from the Arrhenius plot.
- 8. Answer any four questions from the following:

 $10 \times 4 = 40$

- (a) Write the Schrodinger equation for particles in a one-dimensional box and write the solution of this equation. Show that the separation between adjacent energy levels with quantum numbers n and n + 1 decreases as the length of the box increases. Calculate the probability that a particle will be found between 0.49L and 0.51L in a box of length L for n = 1 state.
- (b) Derive Bragg's equation for reflection of X-rays from the faces of a crystal and explain the physical significance of n in the equation. The angle of a Bragg reflection from a set of crystal planes separated by 99.3 pm is 20.85°. Calculate the wavelength of the X-rays.
- (c) Define rate law of a reaction. Define integrated and differential rate laws. Discuss three experimental methods of determining the order of a chemical reaction. Explain how rate constant can be evaluated from the integrated rate law plot for first and second order reaction.
- (d) Show the following:

(i)
$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

(ii)
$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

(iii)
$$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$$

(iv)
$$\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$$

- (e) Derive the Gibbs-Helmholtz equation. Discuss its physical significance.
- (f) Derive the Kelvin equation $(P = p^* e^{\frac{2 \pi m}{RT}})$, where all the symbols have their usual meanings) for the vapour pressure of water droplet.