COMBINED COMPETITIVE EXAMINATION (MAIN)

PHYSICS

Paper-II

Time: 3 Hours Full Marks: 200

Note: (1) The figures in the right-hand margin indicate full marks for the questions.

- (2) Attempt five questions in all.
- (3) Question No. 1 is compulsory.
- (4) The symbols used in the question paper have their usual meanings.
- (5) Relevant constants and their approximate values for use in the calculation: Velocity of light, $c = 3 \times 10^8$ m/sec; Planck's constant, $h = 6.626 \times 10^{-34}$ m² kg/s; Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg; Permeability of free space, $\mu = 4\pi \times 10^{-7}$ NA⁻²
- 1. Answer any ten questions from the following:

 $4 \times 10 = 40$

- (a) Compare the Gauss law in electrostatics in vacuum with that in a dielectric medium.
- (b) What kind of electrostatic situation is described by the Poisson's equation?
- (c) An isolated metallic sphere of radius 1 metre is charged with 10⁻⁶ coulomb of charge. Describe the electrostatic effect on a person sitting inside the sphere.
- (d) In an L-C-R circuit, the current manages to flow through the gap between the capacitor plates. How?
- (e) What is the displacement current in the Maxwell's equations?
- (f) Which physical quantity is signified by the magnitude of a Poynting vector?
- (g) Discuss the assumptions made in the Bohr's theory of hydrogen atom.
- (h) How do the Stokes and anti-Stokes lines appear in the Raman effect?
- (i) Heisenberg's uncertainty principle is a fundamental principle and is not related to the error in the measuring instruments. Justify.
- (j) Calculate the de Broglie wavelength for an electron at the speed of 2.2 × 106 m/s.

- (k) Explain conductors, insulators and semiconductors in terms of band gap energy.
- (1) Explain the working principle of a thermistor.

2. Answer any eight questions from the following:

5×8=40

- (a) Distinguish between the permittivity and permeability of free space.
- (b) Establish the relationship between the electrostatic intensity and electrostatic potential for a given charge distribution.
- (c) A beam of electromagnetic waves cannot pass through a metal surface. Why?
- (d) The current changing at the rate of 1 mA/s through an induction coil induces an e.m.f. of 0.5 V in the coil. Calculate the self-inductance of the coil.
- (e) Illustrate the distinctive properties of diamagnetic and ferromagnetic materials.
- (f) Explain the quantum numbers associated with an electron in the Bohr's atomic model.
- (g) Describe the physical significance of the wave packets associated with the Schrodinger equation.
- (h) The semi-empirical mass formula is the sum of the different energy terms associated with the nucleus. Explain each of these energy terms.
- (i) What will happen when the energy of the photon incident on a photoelectric material is just equal to the work function of the material?
- (j) Discuss the P-N junction of the semiconductor under reverse bais.

3. Answer any five questions from the following:

 $8 \times 5 = 40$

- (a) A stream of electrons, each moving at the speed of 10⁶ m/s along a straight line, produces a current of 0.5 mA. Calculate the number of electrons passing per second through a point on the straight line.
- (b) Discuss the distinctive properties of the hard and the soft X-rays.
- (c) The root mean square of the potential difference in an alternating current circuit is 220 V. What does the statement mean?
- (d) Explain with schematic diagram, the Balmar series of hydrogen spectrum in the Bohr's theory.
- (e) Compare the penetrating and ionizing powers of the alpha, beta and the gamma rays.
- (f) Describe the fundamental properties of superconducting materials.

- 4. Answer any *four* questions from the following: $10\times4=40$

 - Establish that Maxwell's equations admit wave equations in the electric and magnetic fields.
 - (b) An electron is intended to be confined within the nucleus of an atom. Discuss the possibility of the confinement from the Heisenberg's uncertainty principle.
 - (c) Explain Compton effect. Is Compton effect a quantum mechanical effect?
 - What is Radioactivity? Establish the radioactive decay formula for a given initial (d) number of radioactive nuclei.
 - Describe with a neat diagram, how Zener diode can stabilize fluctuations in the potential (e) difference in a circuit.
- Answer any two questions from the following: 5.

 $20 \times 2 = 40$

- Obtain the condition for reasonance in an L-C-R series circuit connected with an (a) alternating e.m.f. source of a given frequency.
- Deduce the form of the Schrodinger wave function for a particle moving inside the cubic box of sides L each.
- Describe the working principle of an electronic oscillator circuit with block diagram. Explain the conditions for sustained oscillations of the circuit.
- Answer any four questions from the following: 6.

 $10 \times 4 = 40$

- (a) State Kirchhoff's circuit laws and explain with example. Can these laws be extended to AC circuits?
- Find the plane wave solutions to Maxwell's wave equation and establish that the electric and the magnetic fields of the wave remain mutually perpendicular.
- Describe the L-S and J-J coupling schemes for angular momenta. How do the couplings (c) help in explaining the fine structure of atomic spectra?
- Explain the nuclear fission and nuclear fusion from the binding energy curve. (d)
- Assuming three inputs and one output, draw the Truth Tables for the OR and the NOR (e) logic gate circuits. Compare the properties of these logic gates.
- Answer any two questions from the following: 7.

 $20 \times 2 = 40$

- Find the expression of the magnetic induction at a distance R from an infinitely long (a) straight conductor carrying a current I.
- Describe the Stern-Gerlach experiment. How is space quantization explained from the (b) results of the experiment?

	(c)	Draw the circuit diagram of a full-wave rectifier and describe the rectification action performed by the circuit.
8.	Ansv	wer the following questions:
	(a)	How are the elementary particles classified? Explain the properties of each class of elementary particles.
	(b)	What is receiver circuit? Explain the working of a super heterodyne receiver.
9.	Ansv	wer the following questions:
	(a)	Give a detailed account of Zeeman effect and state the selection rule for requisite transitions.
	<i>(b)</i>	Describe strong, weak and electromagnetic interactions. Give a comparison of their relative strengths.
10.	Answer the following questions:	
	(a)	What are particle accelerators? Describe the working of a cyclotron accelerator.
	(b)	What is understood by modulation of signals? Detail the essential features of amplitude modulation and frequency modulation.

war and the state from the bit