COMBINED COMPETITIVE EXAMINATION (MAIN)

MATHEMATICS

Paper-II

Time: 3 hours

Full Marks: 200

Note: (1) The figures in the right-hand margin indicate full marks for the questions.

- (2) Attempt five questions in all.
- (3) Question No. 1 is compulsory.
- 1. Answer any ten questions:

4×10=40

- (a) Prove that the function $f(x) = \frac{1}{x}$ is continuous on (0, 1) but not uniformly continuous.
- (b) Using differentials, find an approximate value of the square root $\sqrt{25\cdot2}$ (up to four decimal places).
- (c) Prove that a group G is Abelian if every element of G (except the identity e) is of the order two.
- (d) If H is a subgroup of G and N is a normal subgroup of G, show that $H \cap N$ is a normal subgroup of H.
- (e) Form the partial differential equation by eliminating a, b from the curve $2z = (ax + y)^2 + b$.
- (f) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin although the Cauchy-Riemann equations are satisfied at that point.
- (g) Find the bilinear transformation which maps the points $z_1 = 2$, $z_2 = i$ and $z_3 = -2$ into the points $w_1 = 1$, $w_2 = i$ and $w_3 = -1$ respectively.
- (h) Convert the following binary numbers to decimal equivalents:
 - (i) 111100
 - (ii) 111111

- (i) Convert the following hexadecimal numbers to their decimal equivalents:
 - (i) F117
 - (ii) EBA.C
- (j) Find the mathematical variance of the sum of points on n dice.
- (k) If A and B are any two events, then show that $p(A \cup B) = p(A) + p(B) p(A \cap B)$.
- (1) If A and B are subsets of R which are non-empty and bounded below, then prove that $\inf (A \cup B) = \min \{\inf A, \inf B\}$.
- 2. Answer any eight questions :

5×8=40

- (a) In an LPP, if the objective function f(x) attains its maximum at an interior point of P_F , then show that f is constant provided P_F is bounded.
- (b) Prove that a hyperplane in R^n is a closed convex set.
- (c) Write a flowchart to the first n-Fibonacci numbers.
- (d) A card is drawn from a well-shuffled pack of 52 cards. Find the probability that the drawn card is neither a spade nor a jack.
- (e) If $f = (1 \ 2 \ 3 \ 4 \ 5)$, then find f^{21} .
- (f) Prove that any two right (left) cosets of a sub-group are either disjoint or identical. Also show that $Ha = Hb \Leftrightarrow ab^{-1} \in H$.
- (g) Prove that an absolutely convergent series is convergent.
- (h) Prove that the series $x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots$ $(x \ge 0)$ is convergent for $0 \le x < 1$ and divergent for $x \ge 1$.
- (i) Find the general solution of the differential equation $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(x+y)z}.$
- (j) A function f(x) is defined as follows:

$$f(x) = \frac{x}{1 + e^{\frac{1}{x}}}, \text{ when } x \neq 0$$

$$f(0) = 0, \text{ when } x = 0$$

Show that f(x) is not differentiable at x = 0.

3. Answer any five questions:

8×5=40

- (a) Find a complete integral of the equation $p^2x+q^2y=z$ by Charpit's method.
- (b) Show that a bounded function f which has only a finite number of points of discontinuity in [a, b] is integrable in [a, b].
- (c) Prove that a ring R has no divisors of zero if and only if the cancellation laws hold in R.
- (d) Find all the maxima and minima of the function given by $f(x, y) = x^3 + y^3 63(x+y) + 12xy$.
- (e) Prove that a group of order p^2 is Abelian.
- (f) Find the number of real roots of the equation $2x^5 4x^4 9x 2 = 0$ and determine the pair of consecutive integers between which they lie.
- (g) Show that the function $u = x^3 3xy^2$ is harmonic and find the corresponding analytic function.

4. Answer any four questions:

10×4=40

- (a) Prove that the order of each sub-group of a finite group G is a divisor of the order of the group G. Also show that its converse is not true.
- (b) Calculate the approximate value of $\int_0^{\frac{\pi}{2}} \sin x \, dx$ by
 - (i) trapezoidal rule;
 - (ii) Simpson's rule using 11 ordinates.

Also find which method gives greater accuracy.

(c) Find by Newton-Raphson method, correct to six places of decimals, the root of the equation

$$x\log_{10} x = 4.772393$$

- (d) Prove that every field is an integral domain.
- (e) Find the maximum and minimum values, if they exist, of the function f(x, y) = x 3y where x and y are non-negative and are subject to the inequalities $3x + 4y \ge 19$, $2x y \le 9$, $2x + y \le 15$ and $x y \ge -3$.

5. Answer any two questions:

20×2=40

- (a) State and prove Cauchy's integral theorem.
- (b) Obtain the general solution of the equation $y \frac{\partial^2 z}{\partial y^2} \frac{\partial z}{\partial y} = xy$.
- (c) If $f(x, y) = (x^2 + y^2) \tan^{-1} \frac{y}{x}$ when $x \neq 0$ and $f(0, y) = \frac{\pi y^2}{2}$, show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

6. Answer any four questions:

10×4=40

- (a) Evaluate $\int_L \frac{dz}{z}$, where L represents the square described in the positive sense with sides parallel to the axes and of length 2a and having its centre at the origin.
- (b) Show that if G be a finite Abelian group and a prime p divides order of G, then G has an element of order p.
- (c) Show that the moment of inertia of a lamina in the shape of an isosceles right-angled triangle about its hypotenuse is $\frac{Ma^2}{24}$, where M is its mass and a, the length of the hypotenuse.
- (d) If X is a uniformly distributed random variable over the interval (1, 4), find the probability that Y < 0, where $Y = x^2 4$.
- (e) Explain the principles of dominance in game theory.

7. Answer any two questions:

20×2=40

- (a) Using D'Alembert's principle, derive Hamilton's principle.
- (b) Define holonomic and non-holonomic systems. Also deduce the principle of energy from the Lagrange's equation of motion.
- (c) The particles of a fluid move symmetrically in space with regard to a fixed centre, prove that the equation of continuity is $\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial r} + \frac{\rho}{r^2} \frac{\partial}{\partial r} (r^2 u) = 0, \text{ where } u \text{ is the velocity at a distance } r.$

- **8.** (a) State Newton-Gregory forward interpolation and backward interpolation formulas. If $\log_{10} 654 = 2.8156$, $\log_{10} 658 = 2.8182$, $\log_{10} 659 = 2.8189$ and $\log_{10} 661 = 2.8202$, find $\log_{10} 656$.
 - (b) Let X and Y be two Bernoulli random variables with the same parameter $p = \frac{1}{2}$. Can the support of their sum be equal to $\{0, 1\}$? What about the case where p is not necessarily equal to $\frac{1}{2}$? Note that no particular dependence structure between X and Y is assumed. 20+20=40
- 9. (a) Find the dual of the following linear programming problem: Minimize $Z = 2x_1 + 3x_2 + 4x_3$ subject to the constraints

$$2x_1 + 3x_2 + 5x_3 \ge 2$$
$$3x_1 + x_2 + 7x_3 = 3$$
$$x_1 + 4x_2 + 6x_3 \le 5$$
$$x_1, x_2 \ge 0$$

and x_3 is unrestricted. Also prove that the dual of the dual is primal.

- (b) Define a balanced transportation. Prove that it has at least one feasible solution. 20+20=40
- 10. (a) Show that the transformation $w = i \frac{1-z}{1+z}$ transforms the circle |z|=1 onto the real axis of the w-plane and the interior of the circle into the upper half of the w-plane.
 - (b) Apply Gauss-Seidel iteration method to solve the following equations:

$$10x_1 + x_2 + x_3 = 12$$

 $2x_1 + 10x_2 + x_3 = 13$
 $2x_1 + 2x_2 + 10x_3 = 14$ 20+20=40

* * *