COMBINED COMPETITIVE EXAMINATION (MAIN)

PHYSICS

Paper-II

Time: 3 hours Full Marks: 200

Note: (1) The figures in the right-hand margin indicate full marks for the questions.

- (2) Attempt five questions in all.
- (3) Question No. 1 is compulsory.
- 1. Answer any ten of the following:

 $4 \times 10 = 40$

- (a) Write Coulomb's law in vector form.
- (b) How is the Coulomb force between two charges affected by the presence of a third charge?
- (c) Electric lines of force never cross. Why?
- (d) Two point charges of q and 4q coulombs are fixed at a distance of 12 cm from each other. Sketch the lines of force and locate the neutral point, if any.
- (e) A spherical rubber balloon carries a charge that is uniformly distributed over its surface. As the balloon is blown up, how does \vec{E} vary for points (i) inside the balloon, (ii) on the surface of the balloon and (iii) outside the balloon?

- (f) Does the relation $E = mc^2$ suggest that mass can be converted to energy only when it is in motion?
- (g) What is thermal neutron?
- (h) Why are the total energies E_n of hydrogen atom negative?
- (i) Is Bohr's atomic model consistent with the uncertainty principle? Explain your answer.
- (j) What do you mean by forward bias and reverse bias?
- (k) Why are transistors and semiconductor diodes metal coated?
- (l) How much energy will be released if an electron in third orbit of H-atom jumps to second orbit?
- 2. Answer any eight of the following:

5×8=40

- (a) What do you mean by a point charge?
- (b) For what order of distance, Coulomb law is true?
- (c) Can a metal surface of radius 1×10^{-2} m hold a charge of 1 C?
- (d) An electron enters along the electric line of force. Discuss its motion.
- (e) Why is the divergence of magnetic induction \vec{B} always zero?
- (f) State Pauli's exclusion principle.
- (g) What is Raman effect?
- (h) State the difference between soft X-ray and hard X-ray.

- (i) What is the effect of temperature on the conductivity of a semiconductor?
- (j) What is the electron configuration in various orbits of silicon and germanium?

3. Answer any five of the following:

8×5=40

- (a) Of the three vectors in the equation $\vec{F} = q\vec{v} \times \vec{B}$, which pairs are always at right angles? Which may have any angle between them?
- (b) State Kirchhoff's laws. Why is it preferred over Ohm's law for complicated circuits?
- (c) State Lenz's law and explain.
- (d) State photoelectric effect and explain.
- (e) The threshold wavelength for lithium is 800 Å. What does it mean?
- (f) The base region of a transistor is made very thin as compared with emitter and collector region. Why?

4. Answer any four of the following:

10×4=40

- (a) State Biot-Savart law and explain by drawing diagram (use SI units).
- (b) Show that electromagnetic waves are transverse in nature.
- (c) State Compton's effect. Explain with neat diagram.
- (d) Give explanation of Moseley's law from Bohr's theory.
- (e) The half-life of radon is 4 days. After how many days only 1/10th of radon sample be left behind?

5. Answer any two of the following:

20×2=40

(f,

(a) Obtain the Poynting's theorem for the conservation of energy in an electromagnetic field.

(E

(b) The wave function of a square well potential extending from x = 0 to x = L is $\psi(x) = \sqrt{30}x(x - L)/L^i$. Show that the function is normalized.

(1

(c) Distinguish between ionic, covalent and metallic bonds.

1

2.

6. Answer any four of the following:

10×4=40

- (a) For a charged particle moving in both electric and magnetic fields, show that the total force acting on is $\vec{F} = q\vec{E} + q(\vec{v} \times \vec{B})$. The symbols have their usual meanings.
- (b) Explain the properties of alpha and beta particles.
- (c) Write down the expressions for the current in a critically damped L-C-R circuit.
- (d) Find an expression for the RMS value of the output current in a fullwave rectifier.
- (e) State Zeeman effect.
- 7. Answer any two of the following:

20×2=40

- (a) State Maxwell's equations for electromagnetic field and obtain the wave equations for \vec{E} and \vec{B} in homogeneous isotropic non-conducting medium.
- (b) Obtain a general expression for (i) the radii of Bohr's orbit and (ii) the orbital frequencies for electrons occupying them stating the assumption made.
- (c) What is Zener diode? Explain the characteristic and applications of Zener diode.

79/DD5-2015/PHY-PII/Set-A

8.	Answer	the	following	questions	:
----	--------	-----	-----------	-----------	---

40

- (a) Discuss Einstein's photoelectric equation. What do you mean by threshold frequency and stopping potential? Mention their relation with work function.
- (b) What is distinction between Raman effect and Rayleigh scattering? Distinguish between Stokes and anti-Stokes lines in Raman spectra.

9. Answer the following questions:

40

- (a) What is the binding energy of nucleus? Show how this concept of binding energy is related to the stabilities of atomic nucleus.
- (b) Obtain an expression of mean lifetime of a radioactive element in terms of its half-lifetime.

10. Answer the following questions:

40

- (a) Explain the difference between the band structure of a semiconductor and that of a metal. Why does a semiconductor act as an insulator at 0 K and why its conductivity increases with increasing temperature?
- (b) Write down Schrödinger equation for a particle in one dimension. Find the discrete energy levels and the normalized eigenfunction of a particle in one dimensional infinite square well potential.

